Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest.
نویسندگان
چکیده
Currently, forests in the northeastern United States are net sinks of atmospheric carbon. Under future climate change scenarios, the combined effects of climate change and nitrogen deposition on soil decomposition, aboveground processes, and the forest carbon balance remain unclear. We applied carbon stock, flux, and isotope data from field studies at the Harvard forest, Massachusetts, to the ForCent model, which integrates above- and belowground processes. The model was able to represent decadal-scale measurements in soil C stocks, mean residence times, fluxes, and responses to a warming and N addition experiment. The calibrated model then simulated the longer term impacts of warming and N deposition on the distribution of forest carbon stocks. For simulation to 2030, soil warming resulted in a loss of soil organic matter (SOM), decreased allocation to belowground biomass, and gain of aboveground carbon, primarily in large wood, with an overall small gain in total system carbon. Simulated nitrogen addition resulted in a small increase in belowground carbon pools, but a large increase in aboveground large wood pools, resulting in a substantial increase in total system carbon. Combined warming and nitrogen addition simulations showed a net gain in total system carbon, predominately in the aboveground carbon pools, but offset somewhat by losses in SOM. Hence, the impact of continuation of anthropogenic N deposition on the hardwood forests of the northeastern United States may exceed the impact of warming in terms of total ecosystem carbon stocks. However, it should be cautioned that these simulations do not include some climate-related processes, different responses from changing tree species composition. Despite uncertainties, this effort is among the first to use decadal-scale observations of soil carbon dynamics and results of multifactor manipulations to calibrate a model that can project integrated aboveground and belowground responses to nitrogen and climate changes for subsequent decades.
منابع مشابه
Soil changes induced by hardwood and coniferous tree plantations establishment: Comparison with natural forest soil at Berenjestanak lowland forest in north of Iran
Increasing urbanisation and industrialisation have led to a dramatic reduction in forest area, and now only culturally protected remnants of natural forests and some new plantations remain in most areas of the north of Iran. To investigate the status of the chemical and physical characteristics of soil under these remnant forests and assess the possible impacts of reforestation on soil properti...
متن کاملSoil changes induced by hardwood and coniferous tree plantations establishment: Comparison with natural forest soil at Berenjestanak lowland forest in north of Iran
Increasing urbanisation and industrialisation have led to a dramatic reduction in forest area, and now only culturally protected remnants of natural forests and some new plantations remain in most areas of the north of Iran. To investigate the status of the chemical and physical characteristics of soil under these remnant forests and assess the possible impacts of reforestation on soil properti...
متن کاملSoil changes induced by hardwood and coniferous tree plantations establishment: Comparison with natural forest soil at Berenjestanak lowland forest in north of Iran
Increasing urbanisation and industrialisation have led to a dramatic reduction in forest area, and now only culturally protected remnants of natural forests and some new plantations remain in most areas of the north of Iran. To investigate the status of the chemical and physical characteristics of soil under these remnant forests and assess the possible impacts of reforestation on soil properti...
متن کاملSoil changes induced by hardwood and coniferous tree plantations establishment: Comparison with natural forest soil at Berenjestanak lowland forest in north of Iran
Increasing urbanisation and industrialisation have led to a dramatic reduction in forest area, and now only culturally protected remnants of natural forests and some new plantations remain in most areas of the north of Iran. To investigate the status of the chemical and physical characteristics of soil under these remnant forests and assess the possible impacts of reforestation on soil properti...
متن کاملForest type affects the coupled relationships of soil C and N mineralization in the temperate forests of northern China
Decomposition of soil organic matter (SOM) is sensitive to vegetation and climate change. Here, we investigated the influence of changes in forest types on the mineralization of soil carbon (C) and nitrogen (N), and their temperature sensitivity (Q10) and coupling relationships by using a laboratory soil incubation experiments. We sampled soils from four forest types, namely, a primary Quercus ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Global change biology
دوره 19 8 شماره
صفحات -
تاریخ انتشار 2013